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Abstract – 

Scanning is a key element for many applications in 

the AECO industry. It provides point clouds used for 

construction quality assurance, scan-to-BIM 

workflows and construction surveys. However, data 

acquisition using static laser scanners or 

photogrammetry methods is lengthy and requires 

even lengthier subsequent processing. A quick and 

apparent escape from this problem might be mobile 

mapping solutions mainly based on lidars. However, 

current hand-held scanners suffer from drift, skewing 

point clouds and thus, increasing their spatial error. 

In this paper, we present a novel, real-time and fully 

explainable method exploiting human-machine 

interaction to increase the correctness of produced 

point clouds. Our method progressively reconstructs 

the scanned scene and predicts the regions of a 

potentially high error with a 95% confidence level. 

The user can then revisit these parts of the scene, 

which adds additional constraints on the underlying 

probabilistic graphical model, thus reducing the drift 

and increasing the confidence in the correctness of 

these regions. We build a prototypic lidar-based 

mobile scanner, implement our method and test it in 

a case study. The results show that the areas identified 

with a relatively high spatial error indeed suffer from 

it, while predicted areas with relatively higher 

correctness do have a smaller spatial error. 
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1 Introduction 

In this paper, we propose a novel mobile scanning 

technique aiming at reducing a spatial error in point 

clouds based on the user-scanner interaction. As the user 

traverses a scene, our real-time method visualizes the 

uncertainty related to the correct position of points in a 

progressively-built point cloud, hence informing the user 

on the potentially increasing spatial error. The user can 

then take corrective actions on-the-fly by revisiting 

places with a potentially higher spatial error, thus 

imposing additional constraints on the underlying 

optimization problem and hence reducing the error. 

Digitizing the geometry of existing assets is a key 

element for many use cases in the Architectural, 

Engineering, Construction and Operation (AECO) 

industry.  However, data acquisition using static laser 

scanners or photogrammetry methods is lengthy and 

requires even lengthier subsequent processing [1], [2]. A 

quick and apparent escape from this problem might be 

mobile mapping solutions, mainly based on lidars. 

However, the current state-of-practice mapping 

devices do not allow for scanning with high accuracy [3], 

[4]. Therefore, it is not uncommon that there is a mix of 

static and mobile scanners on construction sites 

depending on the requirements of the use cases at hand 

[3]. 

We define a spatial error as a distribution of distances 

between points by a mobile scanner and their 

corresponding ground truth. This corresponds with the 

geodetic “correctness” of point clouds [5], “absolute 

accuracy” [6] or, simply, “accuracy” [1]. We will use 

these notions interchangeably in this paper. With that in 

mind, the problem statement is that point clouds 

produced by current mobile scanners suffer from 

relatively higher spatial error because of drift increasing 

over time in Simultaneous Localization and Mapping 

(SLAM) systems [7], [8]. 

We propose a novel and fully explainable real-time 

scanning method based on the user-scanner interaction. 

As the user traverses the scene, our system propagates the 

uncertainty of odometric inter key-pose constraints in the 

underlying pose graph. Then, with a high confidence 

level, it computes the largest variability related to each of 

the key poses and visualizes it on the progressively-built 

point cloud using colours. Since the colours displayed on 

the 3D points are based on comparing the variability to 

accuracy levels/bands from surveying standards, our 

method is dedicated specifically to construction use cases. 
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The user can thus see which regions of the point cloud 

are likely to suffer from higher spatial error and can 

revisit them, which adds additional constraints onto the 

pose graph, thus reducing the uncertainty in the key poses. 

The proposed system can be then integrated into the 

practical mobile scanning procedures in the following 

way. Before scanning starts, the user chooses the top and 

bottom levels of point cloud correctness they are willing 

to accept. As the user traverses the scene, the 

progressively-built point cloud gradually changes colour 

from green to red, indicating that the spatial error of the 

red regions of the scene is beyond the set lower level. 

After the desired parts of the scene have been scanned, 

the user revisits these parts of the scene that are coloured 

red, ideally linking them with green areas. 

We build a prototypic scanner consisting of a lidar 

and a laptop, implement our method and test it in a case 

study. With a 95% confidence level, the results show that 

our system correctly predicts the regions of both 

relatively high correctness as well as those suffering from 

high spatial errors. 

Before we proceed to the specifics of our method, 

however, the subsequent section introduces the reader to 

the state of the art (SOTA) pose-graph SLAM systems 

and uncertainty propagation in their underlying models. 

2 Background 

2.1 Pose-graph SLAM 

According to [9], there are two probabilistic SLAM 

paradigms: 1) filtering and 2) smoothing. The former 

focuses on the estimation of the most current pose of the 

scanner given all the measurements of its sensors. It is 

useful in the case of robots that must determine their 

position in real-time as accurately as possible. The latter, 

in turn, focuses on the estimation of all the key poses 

comprising the trajectory of the scanner. Given the fact 

that the correctness of the produced point cloud is a 

function of the trajectory, its wrong estimation will yield 

a skewed point cloud resulting in its higher spatial error. 

Therefore, the smoothing SLAM paradigm is of interest 

in this paper because it focuses on the estimation of the 

whole trajectory, and hence the correctness of the 

produced point cloud as a whole. 

There exist a number of SLAM methods under the 

smoothing paradigm, some of which are described by [9], 

[10] and [11]. Although these authors name their 

methods differently, their approaches share the same core. 

They model this problem using a probabilistic graph and 

then turn it into a problem involving minimizing non-

linear least squares. Even with a relatively good 

initialization, there is no guarantee that such a problem 

can be executed in constant time due to iterations during 

the optimization and is generally considered 

computationally expensive [12]. However, in the light of 

increasing computing power of mobile devices and 

recent scientific advancements in effective factorization 

methods [13], solving graph-based SLAM in near real-

time has become increasingly possible. 

The type of sensors used for SLAM also affects how 

the problem should be modelled. In cases where lidar is 

involved, it is not uncommon to avoid modelling an 

explicit map of the scanned scene and instead focus on 

the trajectory of the scanner only [14]  since a stream of 

lidar points can yield relatively good odometric 

constraints between key poses [9]. Modelling the 

problem this way is otherwise known as pose-graph 

SLAM and involves only the mentioned odometric 

constraints and loop closures. The latter is important 

since they provide constraints that allow creation of a 

globally consistent trajectory, and therefore a globally 

consistent map. 

2.2 Uncertainty propagation in non-linear 

least squares 

On one hand, pose-graph SLAM under the smoothing 

paradigm still suffers from drift, which cannot be 

eliminated [15]. On the other hand, information about 

uncertainty of the key poses can help to localize those 

parts of the trajectory that suffer from drift. In this vein, 

the uncertainty/error of the inter-pose constraints can be 

propagated through the pose-graph so that the joint 

probability of the key poses can be computed [16]. From 

there, uncertainty on the individual poses can be 

calculated through the means of marginal covariances. 

Since the smoothing paradigm of SLAM can be viewed 

as a more general non-linear least-squares minimization 

problem, it is of interest to investigate the methods that 

propagate uncertainty through such systems. Some of 

them are presented in [17], [18] and [19]. 

2.3 Gaps in knowledge 

On one hand, SLAM frameworks still suffer from 

growing drift, resulting in worsening spatial error of 

point clouds. They are not as accurate as the workflows 

based on static scanners and surveying, and there is no 

way to remove the drift in a user-aware manner. On the 

other hand, there are also ways to propagate the 

uncertainty in SLAM systems; however, they are either 

(1) rather theoretical, yielding faster and faster 

approximate methods of recovering marginal 

covariances, or (2) have applications in the detection of 

loop closures where more exact marginal covariances 

allow for fewer candidates among key-poses to be 

searched for to find the best match. 
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2.4 Research objectives 

The point of this paper is to provide a real-time 

method for uncertainty visualization in pose-graph 

SLAM so that the user can be aware of regions of 

potentially higher spatial error and they can take 

corrective actions on-the-fly (during scanning). 

3 Proposed solution 

3.1 Scope & assumptions 

Our solution is designed for SLAM systems working 

on pose-graphs. We assume that our inter key-pose and 

loop-closure constraints do not fail in any way during the 

execution of our system. The spatial error predictions are 

based on the translational part of marginal covariance 

matrices Σ𝑖. 

3.2 Overview 

The core of our idea is to pass the uncertainty encoded 

in marginal covariance matrices Σ𝑖 of the estimated 

trajectory 𝑋  onto the lidar points 𝑃𝐶𝑖
𝑙𝑖𝑑𝑎𝑟   that are 

associated with the key poses 𝑥𝑖, and scene-reference the 

points. See Figure 1 for reference.  Each key pose 

comprises a 3D rotation matrix (3×3) and a translation 

vector (3×1) defined in the coordinate system of the 

scene. The user can then intuitively see what areas of the 

progressively-built scan suffer from a potentially high 

spatial error after scene-referencing the lidar points. As 

explained in section 2.2, there are SOTA real-time 

methods to propagate the uncertainties {Ω1, Ω2, … }  of 

individual inter key-pose transformations {𝑧1 , 𝑧2, … } in 

such a way that the joint probability of all the key poses 

can be computed. There are also real-time methods to 

recover the marginal covariances of the key poses after 

the propagation. Our idea is to pass these marginal 

covariances Σ𝑖  in real-time onto the scene-referenced 

lidar points. 

More specifically, our method is presented in Figure 

2. As the trajectory of a mobile scanner grows, we 

progressively compute the greatest variance for each 

marginal covariance matrix Σ𝑖  associated with the new 

key pose 𝑥𝑖. This will ensure that we find the maximal 

translational error for the new key pose. Given that the 

errors along each of the three axes might be correlated, 

we compute eigenvalues 𝜆𝑘  of the covariance matrix 

according to Equation (1) and pick the largest, marked as 

𝜆𝐿 in processes (a) and (b) in Figure 2 respectively. 𝑣𝑘 is 

an eigenvector associated with the corresponding 

eigenvalue. 

Σ𝑣𝑘 = 𝜆𝑘𝑣𝑘 (1) 

However, such computed variance itself is not a 

useful statistic in practice. Therefore, we convert it into a 

standard deviation and multiply it by 2. We thus obtain a 

95% confidence level on the maximal translation error of 

the current pose. We choose a 95% confidence level to 

comply with land surveying guidance documents such as 

those by the Royal Institution of Chartered Surveyors [20] 

or specifications of Levels of Accuracy (LOA) [5] where 

this level of certainty is de facto a standard. 

Next, we compare the two standard deviations to the 

accuracy levels or bands defined by USBSD or RICS 

respectively. Before, scanning starts, the user chooses 

which guidance document they want to comply with. Our 

system then compares 2√𝜆𝐿  for each key pose against 

the accuracy levels according to the chosen standard. 

We propose to colour-code the scene-referenced lidar 

points according to the accuracy levels. The most 

restrictive accuracy level (for example LOA 10 by [5]) is 

coloured in green while the bottom level (for example 

LOA 50) is red. All levels in between are then colourized 

according to hues in between these two, such as yellow, 

amber and orange. It is likely that current mobile devices 

will be unable to meet the requirements of the most 

stringent accuracy levels. Hence, we propose to cap the 

highest level to the one picked by the user, for example, 

LOA 30. In such a case, all the poses whose 2√𝜆𝐿 are 

smaller than the maximal error associated with LOA 30, 

will remain green. A similar cap can be imposed for the 

bottom level. For example, if 2√𝜆𝐿 is greater than the 

error associated with LOA 40, then the points related to 

this pose will be red. 

Finally, for each new key pose, we transform lidar 

points in the lidar coordinate system 𝑃𝐶𝑖
𝑙𝑖𝑑𝑎𝑟  to the scene 

coordinate system 𝑃𝐶𝑖
𝑠𝑐𝑒𝑛𝑒 according to Equation (2) and 

process (e) in Figure 2, with 𝑥𝑖 , 𝑃𝐶𝑖
𝑙𝑖𝑑𝑎𝑟  and 𝑃𝐶𝑖

𝑠𝑐𝑒𝑛𝑒 

stored in homogenous coordinates. This way, the user 

scanning a scene can see what the predicted correctness 

Figure 1. Part of progressively-built trajectory 𝛸 

consisting of a set of key poses {𝑥1, 𝑥2, 𝑥3, … } 
represented as a pose graph. Black rectangles 

represent constraints 𝑍  including inter key-pose 

odometric transformations {𝑧1, 𝑧2, 𝑧3, … } . Each 

odometric transformation comes with an 

information matrix Ω𝑖  representing uncertainty on 

these transformations. Pose uncertainties are 

marked in purple and are represented by marginal 

covariance matrices {Σ1, Σ2, Σ3, …} 
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of the progressively growing point cloud is in real-time. 

𝑃𝐶𝑖
𝑠𝑐𝑒𝑛𝑒 = 𝑥𝑖𝑃𝐶𝑖

𝑙𝑖𝑑𝑎𝑟 (2) 

The visualization system presented above can then be 

used in the following way. Before scanning starts, the 

user chooses the top and bottom levels of point cloud 

correctness they are willing to accept. As the user 

traverses new parts of the scene, the progressively-built 

point cloud gradually changes colour from green to red, 

indicating that there is a 95% chance that the spatial error 

of the red regions of the scene is beyond the set lower 

level. After the desired parts of the scene have been 

scanned, the user revisits these parts of the scene that are 

coloured red. By revisiting them, the user closes loops in 

the underlying pose graph representing the trajectory of 

the scanner, hence adding additional constraints to the 

graph. The underlying SLAM optimization process then 

shifts the trajectory, and hence the lidar points to a more 

correct position thanks to these additional constraints. 

This increases the confidence level in the correctness of 

the key poses and scene-referenced lidar points. 

3.3 Hypothesis 

For hand-held lidar-based scanners with pose-graph 

SLAM, real-time predictions on the correctness of the 

produced point cloud can enable the user to make 

informed corrective actions during the scanning process, 

thus increasing the correctness of the point cloud. The 

corrective actions are revisiting previous parts of the 

scene in an informed way. 

4 Research methodology 

4.1 Data collection 

We built a prototypic scanner consisting of a 

Velodyne VLP-16 lidar and a MacBook Pro laptop, both 

plugged into a portable power unit as shown in Figure 3. 

We coded up software for the scanner on Linux Ubuntu 

20.04 with Robot Operating System [21] (version Noetic) 

using many own and publicly available repositories and 

frameworks. 

 

 

Figure 3. Our prototypic scanner connected to a 

laptop during scanning. 

Next, we went to one of the colleges and scanned its 

Front Court with the scanner to test our method. During 

scanning, we walked along the four walls so that the 

façade was captured, and we returned to the place we 

started scanning to close a loop. The estimated trajectory 

of the scanner can be seen in Figure 4. In addition, we 

used a FARO Focus 3D terrestrial scanner [22] to provide 

a ground truth scan. The scanner was placed in the middle 

of the court so that it could cover all four façades. 

Figure 2. For each key pose 𝑥𝑖the following processes presented in this figure are executed so 

that the marginal covariance Σ𝑖 is passed onto a scene-referenced pointcloud 𝑃𝐶𝑖
𝑠𝑐𝑒𝑛𝑒  and 

visualized to the user in real time. 
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4.2 Methods 

We follow a Maximum A Posteriori (MAP) 

incremental non-linear pose-graph optimization 

approach by [13], to find such key poses of trajectory 𝑋 

that their errors for the odometric inter key-pose and loop 

closure transformations 𝑧𝑖  are the smallest (Equation (3)). 

𝑋𝑀𝐴𝑃 = min
𝑋

∑‖ℎ𝑖(𝑥𝑖) − 𝑧𝑖‖Ω𝑖
−1

2

𝑖

 (3) 

In Equation (3), ℎ𝑖(. )  are non-linear functions 

transforming key poses stored in the coordinate system 

of the scene to the coordinate system of the previous pose 

in which 𝑧𝑖  is measured. Computation of the odometric 

constraints is based on the Lidar Odometry And Mapping 

technique by [7]. 

We estimated the information matrices Ω𝑖  in such a 

way that after the loop closure event shown in image d) 

of Figure 4, the most uncertain part of the point cloud 

(around the top corner) is coloured red and the other parts 

are green for LOA 10 to 50. 

5 Results & Discussion 

5.1 Raw results 

In Figure 4, we present the progressively created 

point cloud with overlaid uncertainty information. At the 
start of the reconstruction (image a), all the points in the 

scene are green, indicating prediction in their relatively 

correct position. As we traverse the scene, the drift 

increases and so does the estimated spatial error in the 

newly accumulated points. This is shown first in amber 

and then in red in image (b), predicting that the relative 

error in these places is around 3-4 times higher than in 

the bottom part of the scene. Having this information and 

following our method, we decided to return to the green 

area to close the loop and potentially increase the 

correctness of these red points. However, as we go 

towards the place we started the scanning, the newly 

reconstructed parts of the scene on the right side of the 

scene turn even more red (image c), indicating that the 

error there might be 5 times higher than in the green areas. 

Finally, we close the loop in image (d), and the points 

around this area turn green. The system predicts that their 

spatial error decreased significantly. However, the points 

in the corner at the top part of the scene remain amber. 

We will work on the point cloud shown in image (d) 

of Figure 4 and investigate what the actual spatial error 

in the amber region (top corner) is and contrast it with the 

spatial error in the top right corner, which should have a 

relatively lower error according to the predictions of our 

system. 

 

 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 4. Progressively-built point cloud in real-

time with overlaid uncertainty. Green indicates 

high point cloud correctness while red stands for 

predictions for a relatively higher spatial error. 
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5.2 Analysis 

We segmented the point cloud by our scanner into 

three regions (all marked in blue in Figure 6): the one at 

the bottom of the figure was used to register the whole 

point cloud by our mobile scanner to the point cloud by 

the FARO Focus 3D scanner; the one at the top of the 

figure was predicted by our system as having a bigger 

spatial error (see Figure 4 d); finally, the region in the top 

right of the figure was predicted for a relatively lower 

spatial error than the previous region after the loop 

closure (again, see the corresponding Figure 4 d), 

although initially, the error there was even higher than 

that at the top corner (Figure 4 c). 

 

 

Figure 6. A scan from a terrestrial FARO Focus 

3D scanner was used to provide ground truth 

(colourful point cloud). The segmented blue point 

cloud comes from our mobile scanner. 

For the top two regions, we computed the distances to 

the ground truth scan using Cloud Compare. Next, we 

binned them and present them as histograms in Figure 5. 

On these distances, we also computed three statistics: 1) 

a mode (most likely value), a mean (average value) and a 

95-percentile (see Table 1). 

Judging by the modes in Table 1, the blue region at 
the top of Figure 6 has almost 5 times higher most likely 

spatial error than the point cloud in the top right corner 

(47 and 10 mm respectively). It also has around 39% 

higher mean error, and its 95-percentile is larger by 9 mm. 

These three statistics seem to confirm that our system 

correctly predicted the regions of relatively higher spatial 

error. 

In addition to measuring the spatial error above, we 

also took a closer look at the loop closure event that 

occurred right before image (d) in Figure 4 was taken. In 

Figure 7, the initial key poses comprising the odometric 

trajectory (marked with a dashed light blue line) had very 

large marginal covariances (purple spheres), indicating 

that the position of the related point clouds was 

significantly off. After computing the relative 

transformation between the two key poses connected by 

the red line, the trajectory has been recomputed which 

resulted in an updated trajectory marked with a green line. 

The updated key poses now have significantly smaller 

marginal covariances indicated by the much smaller 

spheres. In fact, these spheres are as small as those at the 

start of scanning (Figure 4 a). The updated trajectory and 

its marginal covariances on the key poses seem to be in 

line with other studies on this topic such as those by [23]. 

This shows that we have implemented our method 

correctly. 

Table 1. The actual spatial errors corresponding to the 

two segmented regions of our point cloud shown in 

Figure 6. 

Statistics 

Region with 

predicted low 

spatial error 

[mm] 

Region with 

predicted higher 

spatial error 

[mm] 

Mode 10 47 

Mean 46 64 

95-percentile 140 149 

In this case study, the top corner marked in red in 

Figure 4 (d) still has lower accuracy compared to the 

green part. The question then is how to improve it? The 

informed user could walk up to the corner while scanning, 

diagonally through the lawn, and close the second loop. 

This would further reduce the uncertainty, especially in 

Figure 5. Distribution of error between the ground 

truth and the regions of a point cloud identified by 

our scanner as having a low spatial error (green 

bins) and a high one (red). 
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that region, hence decreasing the error. We are planning 

to show this and demonstrate the impact of closing the 

second loop (and maybe more loops) in the following 

paper in the future. The reason for not demonstrating this 

here is the fact that more loop closures demand even 

tighter integration of odometry and SLAM systems than 

we have currently implemented. However, it is a problem 

related to the architecture of our software and the method 

described in this paper will still hold. 

5.3 Our contributions 

We presented a novel fully-explainable method for 

real-time predictions of areas with potentially high 

spatial error in progressively created point clouds by 

lidar-based mobile scanners. The method exploits the 

human-machine interaction and is suitable for SLAM 

systems based on pose graphs. We implemented it and 

tested its applicability in a case study which confirmed 

that the identified areas of relatively higher spatial error, 

indeed suffer from it. To the best of our knowledge, it is 

the first such system in the world. 

Our system can help the construction industry to 

reduce the effort (time and money) put generally into 

scanning construction sites. Since the user is aware of the 

regions of potentially high spatial error during scanning, 

they can take corrective actions on-the-fly, and not after 
the data collection and processing have been completed. 

This, in turn, might eliminate the potential risk of re-

scanning. 

6 Conclusions 

In this paper, we presented a real-time fully-

explainable method exploiting human-machine 

interaction to increase the correctness of point clouds 

produced by lidar-based mobile scanners. With a 95% 

confidence level, our method predicts areas of relatively 

higher spatial error in a progressively created point cloud. 

We built a mobile scanner, implemented our method, and 

tested it in a case study. The results show that the areas 

identified with a relatively high spatial error indeed suffer 

from it, while areas with relatively higher correctness 

predicted, do have a smaller spatial error in reality. 

The method presented here has the potential to 

increase the accuracy of point clouds produced by lidar-

based SLAM systems operating on pose-graphs. This, in 

turn, might unlock demanding use-cases such as 

engineering surveying or high accuracy measured 

building surveys, which so far have been unreachable by 

mobile scanners due to systematic spatial errors in point 

clouds caused by drift. Moreover, our method might 

contribute to reducing the effort put into scanning by 

giving real-time predictions on the quality of produced 

point clouds, hence eliminating the need for potential 

rescanning. 

In the future, we are planning to test our method in 

more case studies and extend it so that it yields 

predictions in cases where many loops have been closed. 
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Figure 7. Correction of the odometric trajectory 

(dashed blue line) resulting in the SLAM 

trajectory (green line) in the 3D space of the 

scene. The red line connects the two key poses 

used for computing the loop closure with yellow 

arrows showing how the corresponding key poses 

shifted. Purple spheres represent marginal 

covariances. 
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